Cell Clustering for Spatial Transcriptomics Data with Graph Neural Networks

  • Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15932–935 (2018).

    Article

    Google Scholar

  • Moffitt, JR & Zhuang, X. RNA imaging with error-robust multiplexed fluorescence in situ hybridization (MERFISH). Enzymol methods. 5721–49 (2016).

    Article

    Google Scholar

  • Moffitt, JR et al. High-throughput single-cell gene expression profiling with error-robust fluorescence multiplexed in situ hybridization. proc. Natl. Acad. Science. UNITED STATES 11311046–11051 (2016).

    Article

    Google Scholar

  • Chen, KH, Boettiger, AN, Moffitt, JR, Wang, S. & Zhuang, X. Highly multiplexed and spatially resolved RNA profiling in single cells. Science 348aaa6090 (2015).

    Article

    Google Scholar

  • Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. proc. Natl. Acad. Science. UNITED STATES 11619490–19499 (2019).

    Article

    Google Scholar

  • Eng, C.-HL, Shah, S., Thomassie, J. & Cai, L. Profiling the transcriptome with RNA SPOTs. Nat. Methods 141153–1155 (2017).

    Article

    Google Scholar

  • Lubeck, E., Coskun, AF, Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11360–361 (2014).

    Article

    Google Scholar

  • Wang, X. et al. Three-dimensional sequencing of intact tissues of single-cell transcriptional states. Science 361at5691 (2018).

    Article

    Google Scholar

  • Stahl, PL et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 35378–82 (2016).

    Article

    Google Scholar

  • Rodriques, SG et al. Slide-seq: an evolving technology for measuring genome-wide expression at high spatial resolution. Science 3631463-1467 (2019).

    Article

    Google Scholar

  • Stickels, RR et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39313–319 (2021).

    Article

    Google Scholar

  • Nichterwitz, S. et al. Laser capture microscopy coupled with Smart-seq2 for accurate spatial transcriptomic profiling. Nat. Commune. seven12139 (2016).

  • Zhao, E. et al. Spatial transcription at subspot resolution with BayesSpace. Nat. Biotechnol. 391375-1384 (2021).

    Article

    Google Scholar

  • Andersson, A. et al. Single-cell and spatial transcriptomics allow probabilistic inference of cell type topography. Common. Organic. 3565 (2020).

  • Pal, B. et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat. Commune. 81627 (2017).

  • Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell representative 29202-211 (2019).

    Article

    Google Scholar

  • Yuan, Y. & Bar-Joseph, Z. GCNG: graphical convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 21300 (2020).

  • Stuart, T. et al. Full single-cell data integration. Cell 1771888-1902 (2019).

    Article

    Google Scholar

  • Abdelal, T. et al. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol. 20194 (2019).

  • Wolf, FA, Angerer, P. & Theis, FJ SCANPY: Analysis of large-scale single-cell gene expression data. Genome Biol. 1915 (2018).

    Article

    Google Scholar

  • Hao, Y. et al. Integrated multimodal single-cell data analysis. Cell 1843573-3587 (2021).

    Article

    Google Scholar

  • Blondel, VD, Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Rapid deployment of communities in large networks. J. Stat. Mech. Theory Exp. 2008P10008 (2008).

    Article

    Google Scholar

  • Traag, VA, Waltman, L. & Van Eck, NJ From Leuven to Leiden: ensuring well-connected communities. Science. Representing. 95233 (2019).

  • Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 1661308-1323 (2016).

    Article

    Google Scholar

  • Pandey, S., Shekhar, K., Regev, A. & Schier, AF Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq. Running. Biol. 281052-1065 (2018).

    Article

    Google Scholar

  • Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially related subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 361183–1190 (2018).

    Article

    Google Scholar

  • Stoltzfus, CR et al. CytoMAP: A Spatial Analysis Toolkit Reveals Patterns of Myeloid Cell Organization in Lymphoid Tissues. Cell representative 31107523 (2020).

    Article

    Google Scholar

  • Dries, R. et al. Giotto: a toolkit for integrative analysis and visualization of spatial expression data. Genome Biol. 2278 (2021).

  • Pham D., et al. stLearn: integrating spatial localization, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories in undissociated tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).

  • Teng, H., Yuan, Y. & Bar-Joseph, Z. Spatial transcriptomics data clustering. Bioinformatics 38997-1004 (2022).

    Article

    Google Scholar

  • Hu, J. et al. SpaGCN: integration of gene expression, spatial localization and histology to identify spatial domains and spatially variable genes by convolutional network of graphs. Nat. Methods 181342–1351 (2021).

    Article

    Google Scholar

  • Fu, H., et al. Unsupervised spatial integrated deep representation of spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448542 (2021).

  • Chen Y., Zhou S., Li M., Zhao F., and Qi J. STEEL enable high-resolution delineation of spatiotemporal transcriptomic data. Preprint at search square https://doi.org/10.21203/rs.3.rs-1240258/v1 (2022).

  • Kipf TN & Welling M. Semi-supervised classification with convolutional networks of graphs. In Proc. International Conference on Representations of Learning (2017). https://openreview.net/forum?id=SJU4ayYgl

  • Eng, C.-HL et al. Transcriptome-scale super-resolution imaging in tissues by RNA seqFISH+. Nature 568235-239 (2019).

    Article

    Google Scholar

  • Veličković P., et al. Infomax deep chart. In Proc. International Conference on Representations of Learning (2019). https://openreview.net/forum?id=rklz9iAcKQ

  • Maynard, KR et al. Spatial gene expression at the transcriptome scale in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24425–436 (2021).

    Article

    Google Scholar

  • Donjerkovic, D. & Scott, DW Regulation of the G1 phase of the mammalian cell cycle. Cell Res. 284C349–364 (2000).

    Google Scholar

  • Tripathi, V. et al. The long non-coding RNA MALAT1 controls cell cycle progression by regulating the expression of the oncogenic transcription factor B-MYB. PLoS Genet. 9e1003368 (2013).

    Article

    Google Scholar

  • Wang, J. et al. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomedical. Pharmacologist. 68557-564 (2014).

    Article

    Google Scholar

  • Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. & Giraudat, J. Protein phosphatases ABI1 and ABI2 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25295–303 (2001).

    Article

    Google Scholar

  • Mahdessian, D. et al. Spatio-temporal dissection of the cell cycle with single-cell proteogenomics. Nature 590649–654 (2021).

    Article

    Google Scholar

  • Sakaue-Sawano, A. et al. Visualization of spatio-temporal dynamics of multicellular cell cycle progression. Cell 132487–498 (2008).

    Article

    Google Scholar

  • Korsunsky, I. et al. Fast, sensitive, and accurate single-cell data integration with Harmony. Nat. Methods 161289-1296 (2019).

    Article

    Google Scholar

  • Cheng, C. et al. Cloning, expression and characterization of a new human VMP gene. Mol. Biol. representing 29281–286 (2002).

    Article

    Google Scholar

  • Li, S. et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res. 28221-248 (2018).

    Article

    Google Scholar

  • Russ, AP et al. Eomesodermin is necessary for the development of mouse trophoblast and the formation of mesoderm. Nature 40495–99 (2000).

    Article

    Google Scholar

  • Taberner, L., Bañón, A. & Alsina, B. Sensory quiescence of neuroblasts depends on contacts of vascular cytonemes and sensory neuronal differentiation requires the initiation of blood flow. Cell representative 32107903 (2020).

    Article

    Google Scholar

  • Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37685–691 (2019).

    Article

    Google Scholar

  • Li J., Chen S., Pan X., Yuan Y. and Shen H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Zenodo https://doi.org/10.5281/zenodo.6560643 (2022).

  • Comments are closed.